The harsh climatic conditions and paucity of potential pollinators on Southern Ocean Islands (SOIs; latitude 46°S–55°S) lead to the expectation that anemophily or self-fertilization are the dominant modes of plant sexual reproduction. However, at least some species have showy inflorescences suggesting biotic pollination or dimorphic breeding systems necessitating cross-pollination. This study investigates whether anemophily and self-compatibility are common on SOIs, whether species or genera with these traits are more widespread or frequent at higher latitudes, and whether gender dimorphy is correlated with anemophily, as might occur if reliance on pollinators was a disadvantage. Of the 321 flowering plant species in the SOI region, 34.3 % possessed floral traits consistent with anemophily. Compatibility information was located for 94 potentially self-fertilizing species, of which 92.6 % were recorded as partially or fully self-compatible. Dioecy occurred in 7.1 % of species overall and up to 10.2 % of island floras, but has not clearly arisen in situ. Gynodioecy occurred in 3.4 % of species. The frequency of anemophily and gender dimorphy did not differ between the SOI flora and southern hemisphere temperate reference floras. At the species level, gender dimorphy was positively associated with fleshy fruit, but at the genus level it was associated with occurrence in New Zealand and a reduced regional distribution. Anemophily was more prevalent in genera occurring on subantarctic islands and the proportion of species with floral traits suggestive of biotic pollination was significantly higher on climatically milder, cool temperate islands. These results support the contention that reliance on biotic pollinators has constrained the distribution of species on SOIs; however, it is also clear that the reproductive biology of few SOI species has been studied in situ and many species likely employ a mixed mating strategy combining biotic pollination with self-fertilization.
Patterns in floral traits and plant breeding systems on Southern Ocean Islands
Year: 2015