Declining numbers in honeybees and various wild bee species pose a threat to global pollination services. The identification and quantification of the pollination service provided by different taxa within the pollinator guild is a prerequisite for the successful establishment of nature conservation and crop management regimes. Wild bees and hoverflies are considered to be valuable pollinators in agricultural and natural systems. Although some information on the pollination efficiency of individual pollinator species is available, comparative studies of both taxa at different densities are rare. In the present study, the efficiency of the solitary mason bee Osmia rufa and two hoverfly species (Eristalis tenax and Episyrphus balteatus) as pollinators of oilseed rape Brassica napus was examined in a standardized caged plant breeding regime. Honeybee Apis mellifera colonies were used as a reference pollinator taxon. Yield parameters responded differently to pollinator density and identity. Fruit set and the number of seeds per pod increased with increasing pollinator density, although these were stronger in the mason bee than the hoverfly treatment. Weight per 1000 seeds did not respond to any pollinator treatment, indicating that seed quality was not affected. Oilseed rape yield in the highest tested densities of both pollinator taxa resulted in yield values close to the efficiency of small honeybee colonies. Hoverflies required approximately five‐fold densities of the red mason bees to reach a similar fruit set and yield. Thus, mason bees are more efficient in plant breeding and managed pollination systems. Both natural pollinator taxa, however, are of potential value in open and closed crop production systems.
Pollination efficiency of wild bees and hover flies provided to oil seed rape
Year: 2019